Факультет физики информатики и вычислительной техники Кафедра технологии предпринимательства. Курсовая Работа на тему: Водородная Энергетика icon

Факультет физики информатики и вычислительной техники Кафедра технологии предпринимательства. Курсовая Работа на тему: Водородная Энергетика




Скачать 434.49 Kb.
НазваниеФакультет физики информатики и вычислительной техники Кафедра технологии предпринимательства. Курсовая Работа на тему: Водородная Энергетика
страница1/3
Муратова Ю.В
Дата10.10.2012
Размер434.49 Kb.
ТипКурсовая
источник
  1   2   3

Федеративное агентство по образованию
ГОУ ВПО Красноярский государственный педагогический университет им. В.П.Астафьева
Факультет физики информатики и вычислительной техники
Кафедра технологии предпринимательства.





Курсовая Работа на тему:


Водородная Энергетика.


Работу выполнила: Муратова Ю.В.

Группа 31т


Проверил:

Кандидат физико-математических наук,

доцент, куратор курса Радиотехники

Васильев Б.В.


Красноярск 2010


^

Содержание




Введение 3


Раздел 1. Мир ищет энергию.

1.Энергия – с чего все началось 4

2.Сколько людям нужно энергии 6


Раздел 2. Альтернативные источники энергии.

Содержание 2

Введение 3 2

1.Энергия – с чего все началось 4 2

2.Сколько людям нужно энергии 6 2

Список литературы 26


2


Введение


Энергия – не только одно из чаще всего обсуждаемых сегодня понятий; помимо своего основного физического (а в более широком смысле – естественнонаучного) содержания, оно имеет многочисленные экономические, технические, политические и иные аспекты.

Человечеству нужна энергия, причем потребности в ней увеличиваются с каждым годом. Вместе с тем запасы тради­ционных природных топлив (нефти, угля, газа и др.) конечны. Конечны также и запасы ядерного топлива - урана и тория, из которого можно получать в реакторах- размножителях плутоний. Практически неисчерпаемы запасы термоядерного топли­ва – водорода, однако управляемые термоядерные реак­ции пока не освоены и неизвестно, когда они будут использова­ны для промышленного получения энергии в чистом виде, т.е. без участия в этом процессе реакторов деления. Остаются два пути: строгая экономия при расходовании энергоресурсов и использование нетрадиционных возобновляемых источников энергии.


Данная курсовая работа является кратким, но обширным обзором современного состояния энергоресурсов человечества. В работе рассмотрено развитие энергетики, как отрасли народного хозяйства, эволюция источников энергии, а также проблемы освоения и использования новых ресурсов энергии (альтернативные источники энергии). Цель работы – прежде всего ознакомиться с современным положением дел в этой необычайно широкой проблематике, анализ новых путей получения практически полезных форм энергии.

К новым формам первичной энергии, рассмотренным в нашей курсовой работе в пер­вую очередь относятся: солнечная и геотермальная энергия, приливная, атомная, энергия ветра и энергия волн. В отличие от ископаемых топлив эти формы энергии не ограниче­ны геологически накопленными запасами (если атом­ную энергию рассматривать вместе с термоядерной). Это означает, что их использование и потребление не ведет к неизбежному исчерпанию запасов.


Рассмотренные в работе новые схемы преобразования энергии можно объединить единым термином «экоэнергетика», под которым подразумеваются любые методы по­лучения чистой энергии, не вызывающие загрязнения окружающей среды.


3


^ Энергия – с чего все началось


Сегодня нам может казаться, что развитие и совершенствование человека происходило невообразимо медленно. Ему в буквальном смысле слова приходилось ждать милостей от природы. Он был практически беззащитен перед холодом, ему непрестанно угрожали дикие звери, его жизнь постоянно висела на волоске. Но постепенно человек развился настолько, что сумел найти оружие, которое в сочетании со способностью мыслить и творить окончательно возвысило его над всем живым окружением. Сначала огонь добывали случайно – например, из горящих деревьев, в которые ударила молния, затем стали добывать сознательно: за счет трения друг о друга двух подходящих кусков дерева человек впервые зажег огонь 80–150 тысяч лет назад. Животворный, таинственный, вселяющий уверенность и чувство гордости ОГОНЬ.

После этого люди уже не отказывались от возможности использовать огонь в борьбе против суровых холодов и хищных зверей, для приготовления с трудом добытой пищи. Сколько ловкости, настойчивости, опыта, да и просто везения это требовало! Представим себе человека, окруженного нетронутой природой – без построек, которые бы его защищали, без знания хотя бы элементарных физических законов, с запасом слов, не превышающим нескольких десятков. (Кстати, многие ли из нас, даже обладающие солидной научной подготовкой, смогли бы зажечь огонь, не прибегая к каким-либо техническим средствам–хотя бы спичкам?) К этому открытию человек шел очень долго, и распространялось Оно медленно, но ознаменовало собой один из важнейших переломных этапов в истории цивилизации.

Шло время. Люди научились получать тепло, но ста ре располагали никакой силой, кроме собственных мускулов, которая помогала бы им подчинить себе природу. И все же постепенно, мало-помалу они стали использовать силу прирученных животных, ветра и воды. По данным историков, первые тягловые животные была запряжены в плуг около 5000 лет назад. Упоминание о первом использовании водной энергии – запуске первой мельницы с колесом, приводимым в движение водяным потоком,– относится к началу нашего летосчисления. Однако потребовалась еще тысяча лет, прежде чем это изобретение получило распространение. А древнейшие из известных сегодня ветряных мельниц в Европа были построены в XI в.

На протяжении столетий степень использования новых источников энергии - домашних животных, ветра и воды – оставалась очень низкой. Главным же источником энергии, при помощи которой человек строил жилье, обрабатывал поля, «путешествовал», защищался и нападал, служила сила его собственных рук и ног. И так продолжалось примерно до середины нашего тысячелетия. Правда, уже в 1470 г. был спущен на воду первый большой четырехмачтовый корабль; около 1500 г. гениальный Леонардо да Винчи предложил не только весьма остроумную модель ткацкого станка, но и проект сооружения летающей машины. Ему же принадлежат многие другие, для того времени просто фантастические идеи и замыслы, осуществление которых должно было способствовать расширению знаний и производительных сил. Но подлинный перелом в технической мысли человечества наступил сравнительно недавно, немногим более трех столетий назад.

Одним из первых гигантов на пути научного прогресса человечества, несомненно, был Исаак Ньютон. Этот выдающийся английский естествоиспытатель всю свою долгую жизнь и незаурядный талант посвятил пауке: физике, астрономии и математике.


4


Он сформулировал основные законы классической механики, разработал теорию тяготения, заложил основы гидродинамики и акустики, в значительной мере способствовал развитию оптики, вместе с Лейбницем создал начала теории исчисления бесконечно малых и теории симметричных функций.


Физику XVIII и XIX столетий по праву называют ньютоновской. Труды Исаака Ньютона во многом помогли умножить силу человеческих мускулов и творческие возможности человеческого мозга.


Вслед за кембриджскими исследованиями Ньютона в Лондоне в 1633 г. выходит книга «Сто примеров изобретений». Ее автором был мало кому известный сегодня лорд Эдвард Сомерсет (маркиз Вустер). Один из примеров, приведенных в этой книге под номером 68, настолько напоминает водяной насос с паровым приводом, что многие специалисты приписывают Сомерсету честь изобретения паровой машины.

Промышленная революция – так мы часто называем эту эпоху великих открытий – существенно изменила течение жизни на нашей планете. Одним из ее последствий было окончательное падение феодализма, который уже не мог приспособиться к развитию новых производительных сил, и упрочение капиталистических производственных отношений. Джеймс Уатт изобрел паровую машину, которая раскрутила колесо истории до небывалых прежде оборотов.

Паровую машину низкого давления Уатта совершенствовали многие мастера и инженеры. Среди них следует выделить американца Оливера Эванса. Преодолев многие препятствия, этот талантливый механик, полный энтузиазма и смелых идей, в 1801 г, приступил к сооружению малой паровой машины, в которой давление пара в десять раз превышало атмосферное. Уже первые две машины получились необычайно удачными, и в 1802 г. Эванс открыл в Филадельфии первый завод паровых машин высокого давления. Он поставил заказчикам до 50 машин мощностью от 7,4 до 29,4 кВт (10–40 л. с.).

В 1807 г. американский изобретатель Роберт Фултон сконструировал первый пароход «Клермонт», который совершал регулярные рейсы по реке Гудзон между Нью-Йорком и Олбани. Успех «Клермонта» оказался настолько убедительным, что в 1819 г. в США был спущен на воду морской пароход.

Английский техник Джордж Стефенсон в 1823 г. основал завод по изготовлению подвижного состава для общественного транспорта, и в 1825 г.– через шесть лет после смерти Уатта – на трассе Стоктон – Дарлингтон начала действовать первая железная дорога.

В наши дни паровую машину скоро можно будет увидеть только в технических музеях, но и там мы будем смотреть на нее с уважением.

Итальянский физик Алессандро Вольта родился в 1745 г. Он продолжил эксперименты своего земляка Луиджи Гальвани и прославился изобретением электрической батареи (1800). В его честь мы называем основную единицу электрического напряжения вольтом. (В). Вольтову батарею–так называемый элемент–составляли два разных проводника электрического тока (электроды), погруженные в жидкость (электролит), через которую протекал электрический ток. В качестве электродов Вольта использовал медь и цинк, а электролитом служила соленая вода. Долгим и трудным был путь от этого первого источника постоянного тока до современной электрификации большей части нашей планеты. Остановимся на некоторых знаменательных событиях из истории электричества.

Первым убедительным доказательством полезности вольтова элемента было изобретение электрического телеграфа, которое чаще всего приписывают немецкому врачу и натуралисту Самуэлю Земмерингу (1809).


5


Через два года английскому физику и химику Гемфри Дэви удалось получить между двумя угольными электродами электрическую дугу–светящуюся струю электрически заряженных частиц необычайно высокой температуры. Дэви был автором и ряда других открытий в зарождающейся области науки–электрохимии, изучающей связь между электрическими и химическими процессами и явлениями.

Затем последовало множество открытий, связанных с магнитными свойствами электрического тока. Французский физик Андре Ампер стал основоположником новой науки – учения об электромагнетизме. Отсюда оставался один шаг до создания электродвигателя, Этот решающий шаг помогли сделать великий английский физик и химик, бывший ученик переплетчика Майкл Фарадей, немецкий физик, живший и работавший в России, Герман Якоби и многие другие, известные и неизвестные механики, физики и химики.


Первые электродвигатели работали от усовершенствованных вольтовых элементов. Они обладали малой мощностью и постепенно были вытеснены двигателями переменного тока. Для этого потребовалось создать новые источники такого тока – генераторы, а затем турбины, чтобы приводить их в движение.

Путь к всеобщей электрификации проходил через множество крупных и мелких открытий и изобретений. Но это был логичный и целенаправленный путь. Электрическую энергию легко можно передавать на большие расстояния и непосредственно использовать для самых разнообразных целей. Все прежние машины и механизмы требовали «топлива», т. е. источника энергии, непосредственно на месте: паровая машина не в состоянии работать без достаточного количества топлива, ветряная мельница – без ветра, водяная мельница – без потока воды. А электрический двигатель работает и за сотни километров от источника потребляемой им энергии.


^ Сколько людям нужно энергии?


Рождение энергетики произошло несколько миллионов лет тому назад, когда люди научились использовать огонь. Огонь давал им тепло и свет, был источником вдохновения и опти­мизма, оружием против врагов и диких зверей, лечебным средством, помощником в земледелии, консервантом продук­тов, технологическим средством и т.д.

На протяжении многих лет огонь поддерживался путем сжигания растительных энергоносителей (древесины, кустарни­ков, камыша, травы, сухих водорослей и т.п.), а затем была обнаружена возможность использовать для поддержания огня ископаемые вещества: каменный уголь, нефть, сланцы, торф.

Прекрасный миф о Прометее, даровавшем людям огонь, появился в древней Греции значительно позже того, как во многих частях света были освоены методы довольно изощренно­го обращения с огнем, его получением и тушением, сохранени­ем огня и рациональным использованием топлива.

Сейчас известно, что древесина - это аккумулированная с помощью фотосинтеза солнечная энергия. При сгорании каждо­го килограмма сухой древесины выделяется около 20 000 кДж тепла (эта величина в теплотехнике именуется теплотой сгора­ния). Напомним также, что теплота сгорания бурого угла равна примерно 13000 кДж/кг, антрацита 25000 кДж/кг, нефти и нефтепродуктов 42000 кДж/кг, а природного газа 45000 кДж/кг. Самой высокой теплотой сгорания обладает водород -120000 кДж/кг.

Пришло время объяснить, что же такое энергия, т.е. величи­на, измеряемая килоджоулями. Известна и другая физическая величина - работа, имеющая ту же размерность, что и энергия, Зачем нужны два разных понятия?


6

Оказывается, вопрос имеет принципиальное значение. Энер­гия - слово греческое, означающее в переводе деятельность. Термином "энергия" обозначают единую скалярную меру раз­личных форм движения материи. Энергию можно получить при сгорании 1 кг угля или 1 кг нефти, которые называются энерго­носителями. Законы физики утверждают: та работа, которую можно получить в реальных машинах и использовать на наши нужды, будет всегда меньше энергии, заключенной в энергоно­сителе. Энергия - это, по сути дела, энергетический потенциал (или просто потенциал), а работа - это та часть потенциала, которая дает полезный эффект. Разницу между энергией и работой называют диссипированной (или рассеявшейся) энергией. До сих пор по традиции еще применяют понятия потен­циальной и кинетической энергии, хотя в действительности из-за огромного разнообразия видов энергии было бы целесооб­разно пользоваться единственным термином - энергия. Таким образом, работа совершается в процессе преобразования одних видов энергии в другие и характеризует полезную ее часть, полученную в процессе такого преобразования.


Рассеянная в процессе совершения работы энергия неизменно превращается в тепло, которое сообщается окружающему пространству. По­скольку процессы преобразования одних видов энергии в другие бесконечны, любая работа, в конце концов, переходит в тепло, т.е. обесценивается. Это означает, что чем больше чело­вечество добывает угля, нефти и других энергоресурсов, тем больше оно в конечном итоге нагревает окружающую среду.

Прогноз роста потребности в энергии чаще всего связывают с ростом численности населения Земли. При этом предполагают, что на каждого жителя уровень полученной энергии будет также увеличиваться. 15 июля 1987 года численность населения Земли перешла 5-миллиардный рубеж (прогнозы 1975 года утверждали, что это произойдет только после 1990 года!). Ожи­дается, что к 2000 году население составит не меньше 6 млрд. человек, а на каждого жителя будет приходиться в год в сред­нем около 29 МВт·ч получаемой энергии, в то время как общая годовая потребность в ней составит 20-200 млрд. МВт·ч.

Таким образом, можно сказать, что на одного человека в 2000 году будет приходиться 29МВт·ч всех видов вырабатываемой энергии. Каждый житель Земли в том же 2000 году будет потреблять мощность 3 кВт. Надо заметить, что в развитых странах это значение уже достигнуто, а в США, СССР и ря­де других стран на одного человека приходится до 10 кВт энергии всех видов. Развивающиеся страны потребляют значительно меньше, так что среднее мировое значение в настоящее время не превышает 2 кВт на человека.

Предполагается, что к 2000 году общая потребляемая электриче­ская мощность должна удвоиться по отношению к нынешнему уровню и составить (1,8-2,0) 1010кВт (или 20 млрд. кВт). Были предприняты и более глобальные оценки энергопотребления землян в следующем тысячелетии. Большинство экспертов предполагают, что численность населения Земли и потребление энергии должны стабилизироваться на каком-то одном уровне и что произойдет это в середине или конце XXI века. Диапазон оценок такого "стабиль­ного" потребления электрической мощности довольно широк: от 3-1010 до 1011 кВт, что всего в 3-10 раз больше нынешнего уровня. Соответствующие зависимости приведены на рис. 1, откуда видно, что стабилизация на уровне 3·1011 кВт еще мо­жет быть понятна, в то время как другая оценка (1011 кВт) весь­ма сомнительна даже для ориентировочного прогноза.


7


Очевидно, при этом учитывались результаты существующих прогнозов по истощению к середине – концу следующего столе­тия запасов нефти, природного газа и других традиционных энергоресурсов, а также сокращение потребления угля (которо­го, по расчетам, должно хватить на 300 лет) из-за вредных выбро­сов в атмосферу, а также употребления ядерного топлива, которого при условии интенсивного развития реакторов-раз­множителей хватит не менее чем на 1000 лет (из-за трудностей с удалением радиоактивных отходов и захоронением отработав­ших агрегатов АЭС)

В таблице 1 приведена приближенная оценка процентной доли отдельных источников энергии в различные периоды развития человечества.


Доля отдельных источников энергии (%)

Таблица 1.

Период

Мускульная энергия человека

Органические вещества

Древесина

Уголь

Нефть

Природный газ

Водная энергия

Атомная энергия

500 000 лет до н. э.

100















2000 г. до н. э.

70

25

5











Около 1500 г. н. э.

10

20

70











1910 г.



16

16

65

3







1935 г.



13

7

55

15

3

5



1972 г.





10

32

34

18

5

1

1990 г.





1

20

33

26

4

16



Итак, ресурсы практически неисчерпаемы! А потребности? По-видимому, они должны соответствовать не только земным нуждам, но и нуждам космического строительства, космических сообщений по трассе Земля – орбита, межорбитальных сообще­ний, освоения Луны, планет и астероидов. В дальнейшем, по-видимому, потребуются огромные энергетические затраты на обнаружение и установление связи с другими цивилизациями Вселенной.

Мир наполнен энергией, которая может быть использована для совершения работы разного характера. Энергия может находиться и находится в людях и животных, в камнях и растениях, в ископаемом топливе, деревьях и воздухе, в реках и озерах, а мы, в свою очередь, рассмотрим способы извлечения этой энергии и ее преобразования.


8


Введение


Водородная энергетика


В последние десятилетие стало совершенно очевидным, что дальнейшее интенсивное развитие современной энергетики и транспорта ведет человечество к крупномасштабному экологическому кризису. Стремительное сокращение запасов ископаемого топлива будет принуждать индустриально развитые страны расширять сеть атомных энергоустановок, которые во все возрастающей степени станут повышать опасность их эксплуатации. Резко обострится проблема утилизации радиоактивных отходов. Учитывая эту тревожную тенденцию, многие ученые и практики определенно высказываются в пользу ускоренного поиска альтернативных нетрадиционных источников энергии. В частности, их взоры обращаются к водороду, запасы которого водах Мирового океана неисчерпаемы. К тому же неоспоримым достоинством этого топлива являются относительная экологическая безопасность его использования, приемлемость для тепловых двигателей без существенного изменения их конструкции, высокая калорийность, возможность долговременного хранения, транспортировки по существующей транспортной сети, нетоксичность и т.д. Однако существенной непреодоленной проблемой до сегодняшнего дня остается неэкономичность его промышленного производства. Более 600 фирм, компаний, концернов, университетских лабораторий и общественных научно-технических объединений Западной Европы, США, Австралии, Канады и Японии усиленно работают над удешевлением водорода. Успешное решение этой важнейшей задачи революционным образом изменит всю мировую экономику и оздоровит окружающую среду.


Есть целый ряд известных способов разложения воды: химический, термохимический, электролиз и др., но все они обладают одним и тем же крупным недостатком - в технологическом процессе получения водорода используется высокопотенциальная энергия, на получение которой в свою очередь затрачивается дефицитное ископаемое топливо (уголь, природный газ, нефтепродукты) или электроэнергия, вырабатываемая на электростанциях. Такое производство водорода, естественно, всегда будет оставаться неэкономичным и экологически опасным, а, следовательно, бесперспективным.


Вместе с тем наша планета в буквальном смысле слова купается в потоке тепловой энергии, поступающей от Солнца, из земных недр и от хозяйственной деятельности человека. Вся проблема сводится лишь к тому как “вписать” этот неиссякаемый источник низкопотенциального тепла в промышленную технологию получения водорода из воды. Поэтому встает вопрос о концентрации низкопотенциальной энергии до необходимых термодинамических параметров.


9

Традиционно он решается применением оптических концентраторов инфракрасного излучения Солнца (собирающие линзы, зеркала и т.п.) или использованием тепловых насосов, обычно, когда термический потенциал весьма незначителен, например, в случае отбора тепла из окружающей воздушной или водной среды. Первое из названных технических решений очень сильно зависит от климатических и масштабных факторов, нестабильно во времени, а поэтому не нашло широкого применения. Второе решение в меньшей степени подвержено влиянию этих факторов, но не обеспечивает

достаточно высокой степени концентрации (обычно не более 7-10 раз), что на

практике не позволяет сконцентрированное таким способом рассеянное тепло

непосредственно с успехом использовать в процессе разложения воды.


Казалось бы, перспективное на первый взгляд направление развития энергетики просто неосуществимо. Однако это не так. Такая возможность существует. Решение проблемы становится очевидным, если процесс электролиза водного раствора электролита и последующее сжигание полученных водорода и кислорода рассматривать как единый замкнутый термодинамический цикл теплового насоса.


Как известно причина расточительной затраты электроэнергии при классическом электролизе кроется в том, что она используется на преодоление сил гидратных связей ионов с молекулами воды и компенсацию эндотермического эффекта реакции ее разложения. Поэтому для обеспечения восстановления ионов на соответствующих электродах необходимо приложить большее напряжение, чем в случае, когда не проявлялась бы это физическое явление. По этой и другим причинам затраты электроэнергии на выработку одного кубометра водорода с учетом перенапряжения при традиционном электролизе в промышленных условиях составляют 18-21,6 МДж, а общий расход энергии (с учетом производства самой электроэнергии) превышает 50 МДж, что делает водород недопустимо дорогим.


2.Общие сведения и физические свойства водорода

Водород-первый элемент периодической системы химических элементов Д.И. Менделеева. Относительная атомная масса 1,0079. Существуют два стабильных изотопа водорода – 1H (протий) и 2H (дейтерий), а также один радиоактивный – 3H (тритий).

Водород – самый распространённый элемент во Вселенной (92%). А вот открыт водород был сравнительно недавно. Намного позже, чем, скажем, железо или углерод. Сделал это английский химик Г. Кавендиш в 1766 г. В 1787 г. А. Лавуазье доказал, что водород – химический элемент.

В свободном состоянии и при нормальных условиях водород – бесцветный газ, без запаха и вкуса. Относительно воздуха водород имеет плотность 1/14. Он обычно и существует в комбинации с другими элементами, например, кислорода в воде, углерода в метане и в органических соединениях.


10


Охлажденный до жидкого состояния водород занимает 1/700 объема газообразного состояния. Водород при соединении с кислородом имеет самое высокое содержание энергии на единицу массы: 120.7 ГДж/т. Это – одна из причин, почему жидкий водород используется как топливо для ракет и энергетики космического корабля, для которой малая молекулярная масса и высокое удельное энергосодержание водорода имеет первостепенное значение. При сжигании в чистом ислороде единственные продукты – высокотемпературное тепло и вода. Таким образом, при использовании водорода не образуются парниковые газы, и не нарушается круговорот воды в природе.

При обычных условиях водород – газ без цвета и запаха, почти в 15 раз легче воздуха. Обладает очень высокой теплопроводностью, сравнимой с теплопроводностью металлов. Это происходит из-за «легкости» молекул водорода и, следовательно, большой скорости их движения. Водород хорошо растворяется в некоторых металлах: в одном объеме палладия, например, растворяется до 900 объемов водорода. В соотношении 2:1 с кислородом образует взрывчатый «гремучий» газ. Температура сгорания водорода чрезвычайно высока – 2800°С. Водород является великолепным восстановителем.

  1   2   3



Похожие:

Факультет физики информатики и вычислительной техники Кафедра технологии предпринимательства. Курсовая Работа на тему: Водородная Энергетика iconКурсовая работа по дисциплине : «Высокоуровневые методы информатики» на тему : «Разработка программы вычисления биржевого индикатора скользящее среднее»
Министерство образования сельского хозяйства и продовольствия Российской Федерации
Факультет физики информатики и вычислительной техники Кафедра технологии предпринимательства. Курсовая Работа на тему: Водородная Энергетика iconТ. А. Бороненко (заведующая кафедрой информатики и вычислительной математики Ленинградского государственного университета им. А. С. Пушкина); канд пед наук, почетный работник общего образования В. Ю. Коровкин
Печатается по рекомендации кафедры основ производства факультета технологии и предпринимательства и решению редакционно-издательского...
Факультет физики информатики и вычислительной техники Кафедра технологии предпринимательства. Курсовая Работа на тему: Водородная Энергетика iconТребования к кабинету информатики и вычислительной техники
Институтом информатизации рао и размещенного в Интернете по адресу
Факультет физики информатики и вычислительной техники Кафедра технологии предпринимательства. Курсовая Работа на тему: Водородная Энергетика iconИстория развития вычислительной техники. Поколения ЭВМ основные этапы развития вычислительной техники

Факультет физики информатики и вычислительной техники Кафедра технологии предпринимательства. Курсовая Работа на тему: Водородная Энергетика iconРазмеры шрифтов для оформления рефератов: титульный лист огоуспо
Борисоглебский техникум информатики и вычислительной техники шрифт Times New Roman, размер 14, жирный, с заглавной буквы
Факультет физики информатики и вычислительной техники Кафедра технологии предпринимательства. Курсовая Работа на тему: Водородная Энергетика iconРазмеры шрифтов для оформления курсовых и дипломных проектов: титульный лист огоуспо
Борисоглебский техникум информатики и вычислительной техники шрифт Times New Roman, размер 14, жирный, с заглавной буквы
Факультет физики информатики и вычислительной техники Кафедра технологии предпринимательства. Курсовая Работа на тему: Водородная Энергетика icon2. 10. Кабинет информатики и вычислительной техники (ивт) 10 Санитарно-гигиенические требования
Помещения кабинета ивт должны иметь естественное и искусственное освещение в соответствии с СанПиН 2 542-96
Факультет физики информатики и вычислительной техники Кафедра технологии предпринимательства. Курсовая Работа на тему: Водородная Энергетика icon2. 10. Кабинет информатики и вычислительной техники (ивт) 10 Санитарно-гигиенические требования
Помещения кабинета ивт должны иметь естественное и искусственное освещение в соответствии с СанПиН 2 542-96
Факультет физики информатики и вычислительной техники Кафедра технологии предпринимательства. Курсовая Работа на тему: Водородная Энергетика iconДолжностные обязанности по охране труда учителя информатики и вычислительной техники
В своей работе руководствуется СанПин 2 542-96 «Гигиенические требования к видеодисплейным терминалам, персональным электронно-вычислительным...
Факультет физики информатики и вычислительной техники Кафедра технологии предпринимательства. Курсовая Работа на тему: Водородная Энергетика iconКурсовая работа на тему: Организационная культура российских предприятий
Гоу впо «Ярославский государственный педагогический университет им. К. Д. Ушинского»
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©lib3.podelise.ru 2000-2013
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Лекции
Доклады
Справочники
Сценарии
Рефераты
Курсовые работы
Программы
Методички
Документы

опубликовать

Документы