В с. Крутец «Рассмотрено» Руководитель мо / / Ф. И. О. Протокол icon

В с. Крутец «Рассмотрено» Руководитель мо / / Ф. И. О. Протокол




НазваниеВ с. Крутец «Рассмотрено» Руководитель мо / / Ф. И. О. Протокол
страница1/4
в с. Крутец<><><><><> <><>«Рассмотрено»<><> <>Руководитель МО <
Дата03.11.2012
Размер0.93 Mb.
ТипПротокол
источник
  1   2   3   4


Филиал

МОУ «Малиновская средняя общеобразовательная школа

Ртищевского района Саратовской области» в с. Крутец



«Рассмотрено»

Руководитель МО

__________ /____________/

Ф.И.О.

Протокол № _____ от

«_____» _______________ 2011 г.

«Согласовано»

Заместитель директора по УВР МОУ «Малиновская СОШ»

__________ /____________/

Ф.И.О.

«_____» _______________ 2011 г.


«Утверждено»

Директор МОУ «Малиновская СОШ»

__________ /____________/

Ф.И.О.

Приказ № _____ от

«_____» _______________ 2011 г.




^ Рабочая программа педагога


Лобановой Светланы Адольфовны

учителя II категории


по математике 7 класса


Принято на заседании

педагогического совета

Протокол № ____ от

«____» ___________ 2011 г.


село Крутец


2011-2012 учебный год


^ Пояснительная записка

Составлена на основе Примерной программы общеобразовательных учреждений по алгебре 7–9 классы

УМК по предмету «Алгебра 7 класс», авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова

                  • ^ Статус документа

Настоящая программа по алгебре для основной общеобразовательной школы 7 класса составлена на основе федерального компонента государственного стандарта основного общего образования (приказ МОиН РФ от 05.03.2004г. № 1089), примерных программ по математике (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г. № 03-1263), «Временных требований к минимуму содержания основного общего образования» (приказ МО РФ от 19.05.98. № 1236), примерной программы общеобразовательных учреждений по алгебре 7–9 классы, к учебному комплексу для 7-9 классов (авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова Ю.Н., составитель Т.А. Бурмистрова – М: «Просвещение», 2008. – с. 22-26)


Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса.


Цели изучения:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;

  • развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, основы информатики и вычислительной техники), усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач, осуществление функциональной подготовки школьников. В ходе изучения курса учащиеся овладевают приёмами вычислений на калькуляторе.


^ Общая характеристика учебного предмета

Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.

Алгебра Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышле­ния, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.

Геометрия — один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, фор­мирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математи­ческой культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

Таким образом, в ходе освоения содержания курса учащиеся получают возможность:

развить представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;

получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства; сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений. В курсе алгебры 7 класса систематизируются и обобщаются сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной; учащиеся знакомятся с важнейшими функциональными понятиями и с графиками прямой пропорциональности и линейной функции общего вида, действиями над степенями с натуральными показателями, формулами сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители, со способами решения систем линейных уравнений с двумя переменными, вырабатывается умение решать системы уравнений и применять их при решении текстовых задач.


^ Место предмета в учебном плане ОУ «Малиновская средняя общеобразовательная школа»

Согласно Федеральному базисному учебному плану на изучение математики в 7 классе отводится не менее 170 часов из расчета 5 ч в неделю, при этом разделение часов на изучение алгебры и геометрии может быть следующим:

5 часов в неделю алгебры в I четверть, 3 часа в неделю во II-IV четверти, итого 120 часов; 2 часа в неделю геометрии во II-IV четверти, итого 50 часов.

Учебный план МОУ «Малиновская средняя общеобразовательная школа» отводит на изучение алгебры в 7-ом классе 5 часов в неделю алгебры в I четверть, 3 часа в неделю во II-IV четверти, итого 120 часов в год.

^ Уровень обучения – базовый.

Геометрия

Отличительных особенностей рабочей программы по сравнению с примерной программой нет.


В данном классе ведущими методами обучения предмету являются: объяснительно-иллюстративный и репродуктивный, хотя используется и частично-поисковый. На уроках используются элементы следующих технологий: личностно ориентированное обучение, обучение с применением опорных схем, ИКТ.


^ Срок реализации рабочей учебной программы – один учебный год.


Требования к уровню подготовки обучающихся в 7 классе

В ходе преподавания алгебры в 7 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

В результате изучения курса алгебры 7 класса обучающиеся должны:

знать/понимать1

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

Арифметика

уметь

  • выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;

  • переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь — в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;

  • выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с целыми показателями и корней; находить значения числовых выражений;

  • округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;

  • пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;

  • решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;

  • устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;

  • интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений;

^ Алгебра

уметь

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

  • выполнять основные действия со степенями с натуральными показателями, с многочленами; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

  • решать линейные уравнения решать линейные решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

  • изображать числа точками на координатной прямой;

  • определять координаты точки плоскости, строить точки с заданными координатами;

  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

  • применять графические представления при решении уравнений, систем, неравенств;

  • описывать свойства изученных функций (у=кх, где к0, у=кх+b, у=х2, у=х3), строить их графики.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

  • моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;

  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

  • интерпретации графиков реальных зависимостей между величинами.


^ Элементы логики, комбинаторики,
статистики и теории вероятностей


уметь

  • проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выстраивания аргументации при доказательстве (в форме монолога и диалога);

  • распознавания логически некорректных рассуждений;

  • записи математических утверждений, доказательств;

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

  • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

  • понимания статистических утверждений.

Рекомендации по оценке знаний, умений и навыков учащихся по математике.

Опираясь на эти рекомендации, учитель оценивает знания, умения и навыки учащихся с учетом их индивидуальных особенностей.

  1. Содержание и объем материала, подлежащего проверке, определяется программой. При проверке усвоения материала нужно выявлять полноту, прочность усвоения учащимися теории и умения применять ее на практике в знакомых и незнакомых ситуациях.

  2. Основными формами проверки знаний и умений, учащихся по математике являются письменная контрольная работа и устный опрос.

  3. Среди погрешностей выделяются ошибки и недочеты.

Погрешность считается ошибкой, если она свидетельствует о том, что ученик не овладел основными знаниями, умениями, указанными в программе.

К недочетам относятся погрешности, свидетельствующие о недостаточно полном или недостаточно прочном усвоении основных знаний и умений или об отсутствии знаний, которые в программе не считаются основными. Недочетами также считаются: погрешности, которые не привели к искажению смысла полученного учеником задания или способа его выполнения: неаккуратная запись, небрежное выполнение чертежа.

  1. Задания для устного и письменного опроса учащихся состоят из теоретических вопросов и задач.

Ответ на теоретический вопрос считается безупречным, если по своему содержанию полностью соответствует вопросу, содержит все необходимые теоретические факты и обоснованные выводы, а его изложение и письменная запись математически грамотны и отличаются последовательностью и аккуратностью.

Решение задачи считается безупречным, если правильно выбран способ решения, само решение сопровождается необходимыми объяснениями, верно, выполнены нужные вычисления и преобразования, получен верный ответ, последовательно и аккуратно записано решение.

  1. Оценка ответа учащихся при устном и письменном опросе производится по пятибалльной системе.

  2. Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии учащегося, за решение более сложной задачи или ответ на более сложный вопрос, предложенные учащемуся дополнительно после выполнения им задания.

  3. Итоговые отметки (за тему, четверть, курс) выставляются по состоянию знаний на конец этапа обучения с учетом текущих отметок.

Оценка устных ответов учащихся.

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком в определенной логической последовательности, точно используя математическую терминологию и символику;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;

  • продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость использованных при ответе умений и навыков;

  • отвечал самостоятельно без наводящих вопросов учителя.

Возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.

^ Ответ оценивается отметкой «4», если он удовлетворен в основном требованиям на отметку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившие математического содержания ответа, исправленные по замечанию учителя.

  • допущены ошибки или более двух недочетов при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.

^ Отметка «3» ставится в следующих случаях:

  • неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала (определенные «Требованиями к математической подготовке учащихся»).

  • имелись затруднения или допущены ошибки в определении понятий и, использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при знании теоретического материала выявлена недостаточная сформированность умений и навыков.

Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

^ Оценка «1» ставится в случае, если:

  • ученик обнаружил полное незнание и непонимание изучаемого материала или не смог ответить ни на один из поставленных вопросов по изучаемому материалу.

Оценка письменных контрольных работ учащихся.

Отметка «5» ставится в следующих случаях:

  • работа выполнена полностью.

  • в логических рассуждениях и обоснованиях нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала);

Отметка «4» ставится, если:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умения обосновывать рассуждения не являлись специальным объектом проверки);

  • допущена одна ошибка или два-три недочета в выкладках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки);

^ Отметка «3» ставится, если:

  • допущены более одной ошибки или более двух- трех недочетов в выкладках, чертежах или графика, но учащийся владеет обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что учащийся не владеет обязательными знаниями по данной теме в полной мере.

^ Отметка «1» ставится, если:

  • работа показала полное отсутствие у учащегося обязательных знаний, умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.



^ Условные обозначения


Тип урока

Вид контроля

^ Формы обучения

Виды деятельности


УФЗ


Урок формирования знаний


УС


Устный счёт


ЛЕК


Лекция


КОЛ


Коллективная


УФСЗ

Урок формирования и совершенствования знаний


УО


Устный опрос


БЕС


Беседа


ИНД



Индивидуальная


УСЗУН

Урок формирования и

совершенствования знаний, умений и навыков


ФО


Фронтальный опрос


РАС


Рассказ


ГРУП


Групповая


УЗСЗ

Урок закрепления и совершенствования знаний


САМ Р


Самостоятельная работа


СЕМ


Семинар


ФРОН


Фронтальная


УКЗУН


Урок контроля знаний, умений и навыков.


ИЗ


Индивидуальное задание


ПРАК


Практикум


САМ


Самостоятельная


КУ



Комбинированный урок


МТ


Математический тест



ЭКС


Экскурсия


ИССЛ


Исследовательская


УКЗ


Урок коррекции знаний, умений и навыков.


МД


Математический диктант


КОНС


Консультация


ПРОЕК


Проектная


 УОСЗ


 Урок обобщения и систематизации знаний


ПР Р


Практическая работа


ЛАБ. Р.


Лабораторная работа


ИГР


Игровая








К Р



Контрольная работа



С - ПР


Семинар - практикум






  1   2   3   4



Похожие:

В с. Крутец «Рассмотрено» Руководитель мо / / Ф. И. О. Протокол iconВ с. Крутец «Рассмотрено» Руководитель мо лобанова С. А. Протокол
Филиал моу «Малиновская сош ртищевского района Саратовской области» в с. Крутец
В с. Крутец «Рассмотрено» Руководитель мо / / Ф. И. О. Протокол iconВ с. Крутец «Рассмотрено» Руководитель мо / / Ф. И. О. Протокол
Данная рабочая программа ориентирована на учащихся 8 класса и реализуется на основе следующих документов
В с. Крутец «Рассмотрено» Руководитель мо / / Ф. И. О. Протокол iconВ с. Крутец «Рассмотрено» Руководитель мо / / Ф. И. О. Протокол
М.: бином. Лаборатория знаний, 2005. Она существенно дополняет содержание учебников «Информатика» для 6 класса. Настоящая рабочая...
В с. Крутец «Рассмотрено» Руководитель мо / / Ф. И. О. Протокол icon«Рассмотрено» Руководитель гмо /Руднева И. Н / Протокол № от 2011 г. «Согласовано»
«Средняя общеобразовательная школа №1 с углубленным изучением отдельных предметов»
В с. Крутец «Рассмотрено» Руководитель мо / / Ф. И. О. Протокол iconМоу «Малиновская средняя общеобразовательная школа Ртищевского района Саратовской области» филиал в селе Крутец
Данная рабочая программа адресована учащимся 9 класса моу «Малиновская сош» филиал в с. Крутец
В с. Крутец «Рассмотрено» Руководитель мо / / Ф. И. О. Протокол iconВ том числе: находится на контроле (не рассмотрено) рассмотрено и снято с контроля письменные

В с. Крутец «Рассмотрено» Руководитель мо / / Ф. И. О. Протокол iconВ том числе: находится на контроле (не рассмотрено) рассмотрено и снято с контроля письменные

В с. Крутец «Рассмотрено» Руководитель мо / / Ф. И. О. Протокол iconВ том числе: находится на контроле (не рассмотрено) рассмотрено и снято с контроля письменные

В с. Крутец «Рассмотрено» Руководитель мо / / Ф. И. О. Протокол iconФилиал моу «Малиновская средняя общеобразовательная школа» в селе Крутец
Данная рабочая программа адресована учащимся 6 класса филиала моу «Малиновская средняя общеобразовательная школа Ртищевского района...
В с. Крутец «Рассмотрено» Руководитель мо / / Ф. И. О. Протокол iconФилиал моу «Малиновская средняя общеобразовательная школа» в селе Крутец
Данная рабочая программа адресована учащимся 7 класса филиала моу «Малиновская средняя общеобразовательная школа Ртищевского района...
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©lib3.podelise.ru 2000-2013
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Лекции
Доклады
Справочники
Сценарии
Рефераты
Курсовые работы
Программы
Методички
Документы

опубликовать

Документы